Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0299595, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451972

RESUMO

OBJECTIVE: Glycolytic inhibition via 2-deoxy-D-glucose (2DG) has potential therapeutic benefits for a range of diseases, including cancer, epilepsy, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA), and COVID-19, but the systemic effects of 2DG on gene function across different tissues are unclear. METHODS: This study analyzed the transcriptional profiles of nine tissues from C57BL/6J mice treated with 2DG to understand how it modulates pathways systemically. Principal component analysis (PCA), weighted gene co-network analysis (WGCNA), analysis of variance, and pathway analysis were all performed to identify modules altered by 2DG treatment. RESULTS: PCA revealed that samples clustered predominantly by tissue, suggesting that 2DG affects each tissue uniquely. Unsupervised clustering and WGCNA revealed six distinct tissue-specific modules significantly affected by 2DG, each with unique key pathways and genes. 2DG predominantly affected mitochondrial metabolism in the heart, while in the small intestine, it affected immunological pathways. CONCLUSIONS: These findings suggest that 2DG has a systemic impact that varies across organs, potentially affecting multiple pathways and functions. The study provides insights into the potential therapeutic benefits of 2DG across different diseases and highlights the importance of understanding its systemic effects for future research and clinical applications.


Assuntos
Desoxiglucose , Epilepsia , Camundongos , Animais , Desoxiglucose/farmacologia , Desoxiglucose/metabolismo , Camundongos Endogâmicos C57BL , Glucose/metabolismo , Perfilação da Expressão Gênica
2.
bioRxiv ; 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38496398

RESUMO

In recent years, microglia have been highlighted for playing integral roles in neurodegenerative diseases, like glaucoma. To better understand the role of microglia during chronic ocular hypertension, we depleted microglia from aged (9-12 months old) DBA/2J (D2) mice, which exhibit age-related increases in intraocular pressure, using a dietary CSF1R antagonist, PLX5622. Retinal ganglion cell (RGC) somas were counted, and optic nerve cross-sections stained and assessed for glaucomatous damage. Sustained administration of dietary PLX5622 significantly reduced the numbers of retinal microglia. Dietary PLX5622 did not lead to changes in intraocular pressure in D2 or normotensive DBA/2J-Gpnmb+ (D2-Gpnmb+) control mice. While PLX5622-treated D2-Gpnmb+ did not develop optic nerve damage, PLX5622-treated D2 mice showed a significant increase in moderate-to-severe optic nerve damage compared to D2 mice fed a control diet. In conclusion, global reduction of microglia exacerbated glaucomatous neurodegeneration in D2 mice suggesting microglia play an overall beneficial role in protecting from ocular hypertension associated RGC loss.

3.
Alzheimers Dement ; 20(1): 601-614, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37753835

RESUMO

INTRODUCTION: Human data suggest susceptibility and resilience to features of Alzheimer's disease (AD) such as microglia activation and synaptic dysfunction are under genetic control. However, causal relationships between these processes, and how genomic diversity modulates them remain systemically underexplored in mouse models. METHODS: AD-vulnerable hippocampal neurons were virally labeled in inbred (C57BL/6J) and wild-derived (PWK/PhJ) APP/PS1 and wild-type mice, and brain microglia depleted from 4 to 8 months of age. Dendrites were assessed for synapse plasticity changes by evaluating spine densities and morphologies. RESULTS: In C57BL/6J, microglia depletion blocked amyloid-induced synaptic density and morphology changes. At a finer scale, synaptic morphology on individual branches was dependent on microglia-dendrite physical interactions. Conversely, synapses from PWK/PhJ mice showed remarkable stability in response to amyloid, and no evidence of microglia contact-dependent changes on dendrites. DISCUSSION: These results demonstrate that microglia-dependent synaptic alterations in specific AD-vulnerable projection pathways are differentially controlled by genetic context.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Modelos Animais de Doenças , Plasticidade Neuronal/genética , Sinapses/metabolismo , Amiloide/metabolismo , Dendritos/metabolismo
4.
Aging Cell ; 23(2): e14033, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38130024

RESUMO

The disconnection of neuronal circuitry through synaptic loss is presumed to be a major driver of age-related cognitive decline. Age-related cognitive decline is heterogeneous, yet whether genetic mechanisms differentiate successful from unsuccessful cognitive decline through maintenance or vulnerability of synaptic connections remains unknown. Previous work using rodent and primate models leveraged various techniques to imply that age-related synaptic loss is widespread on pyramidal cells in prefrontal cortex (PFC) circuits but absent on those in area CA1 of the hippocampus. Here, we examined the effect of aging on synapses on projection neurons forming a hippocampal-cortico-thalamic circuit important for spatial working memory tasks from two genetically distinct mouse strains that exhibit susceptibility (C57BL/6J) or resistance (PWK/PhJ) to cognitive decline during aging. Across both strains, synapse density on CA1-to-PFC projection neurons appeared completely intact with age. In contrast, we found synapse loss on PFC-to-nucleus reuniens (RE) projection neurons from aged C57BL/6J but not PWK/PhJ mice. Moreover, synapses from aged PWK/PhJ mice but not from C57BL/6J exhibited altered morphologies that suggest increased efficiency to drive depolarization in the parent dendrite. Our findings suggest resistance to age-related cognitive decline results in part by age-related synaptic adaptations, and identification of these mechanisms in PWK/PhJ mice could uncover new therapeutic targets for promoting successful cognitive aging and extending human health span.


Assuntos
Hipocampo , Neurônios , Humanos , Camundongos , Animais , Idoso , Camundongos Endogâmicos C57BL , Hipocampo/fisiologia , Células Piramidais , Sinapses/fisiologia , Plasticidade Neuronal/genética
5.
bioRxiv ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37546799

RESUMO

The disconnection of neuronal circuits through synaptic loss is presumed to be a major driver of age-related cognitive decline. Age-related cognitive decline is heterogeneous, yet whether genetic mechanisms differentiate successful from unsuccessful cognitive decline through synaptic structural mechanisms remains unknown. Previous work using rodent and primate models leveraged various techniques to suggest that age-related synaptic loss is widespread on pyramidal cells in prefrontal cortex (PFC) circuits but absent on those in area CA1 of the hippocampus. Here, we examined the effect of aging on synapses on projection neurons forming a hippocampal-cortico-thalamic circuit important for spatial working memory tasks from two genetically distinct mouse strains that exhibit susceptibility (C57BL/6J) or resistance (PWK/PhJ) to cognitive decline during aging. Across both strains, synapses on the CA1-to-PFC projection neurons appeared completely intact with age. In contrast, we found synapse loss on PFC-to-nucleus reuniens (RE) projection neurons from aged C57BL/6J but not PWK/PhJ mice. Moreover, synapses from aged PWK/PhJ mice but not from C57BL/6J exhibited morphological changes that suggest increased synaptic efficiency to depolarize the parent dendrite. Our findings suggest resistance to age-related cognitive decline results in part by age-related synaptic adaptations, and identification of these mechanisms in PWK/PhJ mice could uncover new therapeutic targets for promoting successful cognitive aging and extending human health span.

6.
bioRxiv ; 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37162819

RESUMO

Common features of Alzheimer's disease (AD) include amyloid pathology, microglia activation and synaptic dysfunction, however, the causal relationships amongst them remains unclear. Further, human data suggest susceptibility and resilience to AD neuropathology is controlled by genetic context, a factor underexplored in mouse models. To this end, we leveraged viral strategies to label an AD-vulnerable neuronal circuit in CA1 dendrites projecting to the frontal cortex in genetically diverse C57BL/6J (B6) and PWK/PhJ (PWK) APP/PS1 mouse strains and used PLX5622 to non-invasively deplete brain microglia. Reconstructions of labeled neurons revealed microglia-dependent changes in dendritic spine density and morphology in B6 wild-type (WT) and APP/PS1 yet a marked stability of spines across PWK mice. We further showed that synaptic changes depend on direct microglia-dendrite interactions in B6. APP/PS1 but not PWK. APP/PS1 mice. Collectively, these results demonstrate that microglia-dependent synaptic alterations in a specific AD-vulnerable projection pathway are differentially controlled by genetic context.

7.
Curr Top Dev Biol ; 148: 79-113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35461569

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative disease whose risk is influenced by genetic and environmental factors. Although a number of pathological hallmarks have been extensively studied over the last several decades, a complete picture of disease initiation and progression remains unclear. We now understand that numerous cell types and systems are involved in AD pathogenesis, and that this cellular profile may present differently for each individual, making the creation of relevant mouse models challenging. However, with increasingly diverse data made available by genome-wide association studies, we can identify and examine new genes and pathways involved in genetic risk for AD, many of which involve vascular health and inflammation. When developing mouse models, it is critical to assess (1) an aging timeline that represents onset and progression in humans, (2) genetic variants and context, (3) environmental factors present in human populations that result in both neuropathological and functional changes-themes that we address in this chapter.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Envelhecimento/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Camundongos
8.
Genes (Basel) ; 12(12)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34946847

RESUMO

Systemic lupus erythematosus (SLE) is a chronic, multisystem, autoimmune inflammatory disease with genomic and non-genomic contributions to risk. We hypothesize that epigenetic factors are a significant contributor to SLE risk and may be informative for identifying pathogenic mechanisms and therapeutic targets. To test this hypothesis while controlling for genetic background, we performed an epigenome-wide analysis of DNA methylation in genomic DNA from whole blood in three pairs of female monozygotic (MZ) twins of European ancestry, discordant for SLE. Results were replicated on the same array in four cell types from a set of four Danish female MZ twin pairs discordant for SLE. Genes implicated by the epigenetic analyses were then evaluated in 10 independent SLE gene expression datasets from the Gene Expression Omnibus (GEO). There were 59 differentially methylated loci between unaffected and affected MZ twins in whole blood, including 11 novel loci. All but two of these loci were hypomethylated in the SLE twins relative to the unaffected twins. The genes harboring these hypomethylated loci exhibited increased expression in multiple independent datasets of SLE patients. This pattern was largely consistent regardless of disease activity, cell type, or renal tissue type. The genes proximal to CpGs exhibiting differential methylation (DM) in the SLE-discordant MZ twins and exhibiting differential expression (DE) in independent SLE GEO cohorts (DM-DE genes) clustered into two pathways: the nucleic acid-sensing pathway and the type I interferon pathway. The DM-DE genes were also informatically queried for potential gene-drug interactions, yielding a list of 41 drugs including a known SLE therapy. The DM-DE genes delineate two important biologic pathways that are not only reflective of the heterogeneity of SLE but may also correlate with distinct IFN responses that depend on the source, type, and location of nucleic acid molecules and the activated receptors in individual patients. Cell- and tissue-specific analyses will be critical to the understanding of genetic factors dysregulating the nucleic acid-sensing and IFN pathways and whether these factors could be appropriate targets for therapeutic intervention.


Assuntos
Metilação de DNA/genética , Doenças em Gêmeos/genética , Interferons/genética , Lúpus Eritematoso Sistêmico/genética , Ácidos Nucleicos/genética , Transdução de Sinais/genética , Gêmeos Monozigóticos/genética , DNA/genética , Sistemas de Liberação de Medicamentos/métodos , Epigenômica/métodos , Feminino , Técnicas Genéticas , Humanos , Regiões Promotoras Genéticas/genética
9.
Sci Rep ; 11(1): 14789, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285256

RESUMO

To compare lupus pathogenesis in disparate tissues, we analyzed gene expression profiles of human discoid lupus erythematosus (DLE) and lupus nephritis (LN). We found common increases in myeloid cell-defining gene sets and decreases in genes controlling glucose and lipid metabolism in lupus-affected skin and kidney. Regression models in DLE indicated increased glycolysis was correlated with keratinocyte, endothelial, and inflammatory cell transcripts, and decreased tricarboxylic (TCA) cycle genes were correlated with the keratinocyte signature. In LN, regression models demonstrated decreased glycolysis and TCA cycle genes were correlated with increased endothelial or decreased kidney cell transcripts, respectively. Less severe glomerular LN exhibited similar alterations in metabolism and tissue cell transcripts before monocyte/myeloid cell infiltration in some patients. Additionally, changes to mitochondrial and peroxisomal transcripts were associated with specific cells rather than global signal changes. Examination of murine LN gene expression demonstrated metabolic changes were not driven by acute exposure to type I interferon and could be restored after immunosuppression. Finally, expression of HAVCR1, a tubule damage marker, was negatively correlated with the TCA cycle signature in LN models. These results indicate that altered metabolic dysfunction is a common, reversible change in lupus-affected tissues and appears to reflect damage downstream of immunologic processes.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Lúpus Eritematoso Discoide/genética , Nefrite Lúpica/genética , Animais , Ciclo do Ácido Cítrico , Bases de Dados Genéticas , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Glucose/metabolismo , Glicólise , Humanos , Interferon Tipo I/efeitos adversos , Metabolismo dos Lipídeos , Lúpus Eritematoso Discoide/metabolismo , Nefrite Lúpica/metabolismo , Camundongos
10.
Learn Mem ; 27(9): 355-371, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32817302

RESUMO

Individual differences in cognitive decline during normal aging and Alzheimer's disease (AD) are common, but the molecular mechanisms underlying these distinct outcomes are not fully understood. We utilized a combination of genetic, molecular, and behavioral data from a mouse population designed to model human variation in cognitive outcomes to search for the molecular mechanisms behind this population-wide variation. Specifically, we used a systems genetics approach to relate gene expression to cognitive outcomes during AD and normal aging. Statistical causal-inference Bayesian modeling was used to model systematic genetic perturbations matched with cognitive data that identified astrocyte and microglia molecular networks as drivers of cognitive resilience to AD. Using genetic mapping, we identified Fgf2 as a potential regulator of the astrocyte network associated with individual differences in short-term memory. We also identified several immune genes as regulators of a microglia network associated with individual differences in long-term memory, which was partly mediated by amyloid burden. Finally, significant overlap between mouse and two different human coexpression networks provided strong evidence of translational relevance for the genetically diverse AD-BXD panel as a model of late-onset AD. Together, this work identified two candidate molecular pathways enriched for microglia and astrocyte genes that serve as causal AD cognitive biomarkers, and provided a greater understanding of processes that modulate individual and population-wide differences in cognitive outcomes during AD.


Assuntos
Envelhecimento , Doença de Alzheimer , Astrócitos , Disfunção Cognitiva , Reserva Cognitiva , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Microglia , Envelhecimento/genética , Envelhecimento/imunologia , Envelhecimento/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Comportamento Animal/fisiologia , Biomarcadores , Encéfalo , Disfunção Cognitiva/genética , Disfunção Cognitiva/imunologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Reserva Cognitiva/fisiologia , Feminino , Humanos , Individualidade , Masculino , Camundongos , Camundongos Transgênicos , Modelos Genéticos
11.
Front Genet ; 10: 35, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30787942

RESUMO

Across the population, individuals exhibit a wide variation of susceptibility or resilience to developing Alzheimer's disease (AD). Identifying specific factors that promote resilience would provide insight into disease mechanisms and nominate potential targets for therapeutic intervention. Here, we use transcriptome profiling to identify gene networks present in the pre-symptomatic AD mouse brain relating to neuroinflammation, brain vasculature, extracellular matrix organization, and synaptic signaling that predict cognitive performance at an advanced age. We highlight putative drivers of these observed relationships, including Itgb2, Fcgr2b, Slc6a14, and Gper1, which represent prime targets through which to promote resilience prior to overt symptom onset. In addition, we identify a genomic region on chromosome 2 containing variants that directly modulate resilience network expression. Overall, work here highlights new potential drivers of resilience to AD and contributes significantly to our understanding of early, potentially causal, disease mechanisms.

12.
Neuron ; 101(3): 399-411.e5, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30595332

RESUMO

An individual's genetic makeup plays a large role in determining susceptibility to Alzheimer's disease (AD) but has largely been ignored in preclinical studies. To test the hypothesis that incorporating genetic diversity into mouse models of AD would improve translational potential, we combined a well-established mouse model of AD with a genetically diverse reference panel to generate mice that harbor identical high-risk human mutations but differ across the remainder of their genome. We first show that genetic variation profoundly modifies the impact of human AD mutations on both cognitive and pathological phenotypes. We then validate this complex AD model by demonstrating high degrees of genetic, transcriptomic, and phenotypic overlap with human AD. Overall, work here both introduces a novel AD mouse population as an innovative and reproducible resource for the study of mechanisms underlying AD and provides evidence that preclinical models incorporating genetic diversity may better translate to human disease.


Assuntos
Doença de Alzheimer/genética , Modelos Animais de Doenças , Medicina de Precisão/métodos , Pesquisa Translacional Biomédica/normas , Doença de Alzheimer/patologia , Animais , Feminino , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Medicina de Precisão/normas , Especificidade da Espécie , Pesquisa Translacional Biomédica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...